Matematika

Pertanyaan

diketahui f(2x-1)=8x²+x+5 dan g(4x+1/3)=7x-1 tentukan f(x) dan g(x)

2 Jawaban

  • jawab

    f(2x -1)= 8x² + x  + 5
    2x- 1 = y
    x = 1/2 (y+1)
    f(y) = 8{ 1/2 (y+1)}² + 1/2(y + 1)  + 5
    f(x) = 8 { 1/2 (x+1)}²+1/2 (x + 1) + 5
    f(x) = 8 {1/4 (x²+2x + 1)} + 1/2 x + 1/2 + 5
    f(x) = 2 (x² + 2x + 1) + 1/2 x + 1/2 + 5
    f(x )= 2x² + 4x + 2 + 1/2 x + 1/2 + 5
    f(x) = 2x² + 4 1/2 x + 7 1/2
    f(x) = 1/2 (4x² + 9 x + 15)

    g{(4x + 1)/3} = 7x - 1
    (4x+ 1)/3 = y
    4x+ 1 = 3y
    4x = 3y - 1
    x = 1/4 ( 3y - 1)

    g(y)= 7 { 1/4 (3y -1)}
    g(x) = 7 { 1/4 (3x - 1)}
    g(x) = 7/4 (3x + 1)
    atau
    g(x ) = 1/4 (21 x + 7)
    atau
    g(x) = (21x + 7) /4
  • g((4x+1)/3) = 7x - 1

    y = 
    (4x+1)/3
    3y = 4x + 1
    4x = 3y - 1
    x = (3y - 1) / 4

    g(y) = 7((3y - 1) / 4) - 1
    g(x) = 7((3x - 1) / 4) - 1
    g(x) = (21x - 7)/4  - 4/4
    g(x) = (21x - 11)/4
    g(x) = (1/4) (21x - 7)

Pertanyaan Lainnya